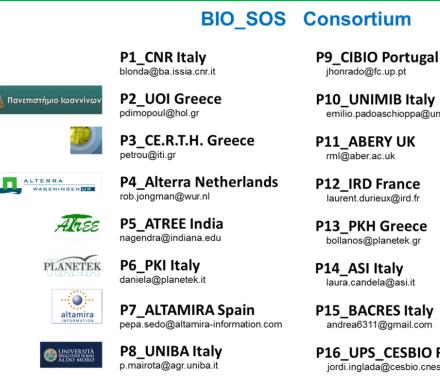

Biodiversity Multi-Source Monitoring System: From Space To Species (BIO SOS)


On behalf of BIO_SOS consortium

Palma Blonda, Coordinator CNR-ISSIA, Bari-Italy

Objective The development of a pre-operational multimodular system suitable for multi-annual monitoring of NATURA 2000 sites and surrounds based on EO data

> FP7-SPACE, 3rd call. GA 263435 1/12/2010 - 1/12/2013

P10 UNIMIB Italy emilio.padoaschioppa@unimib.it

P11 ABERY UK rml@aber.ac.uk

IRD

PLANETEK

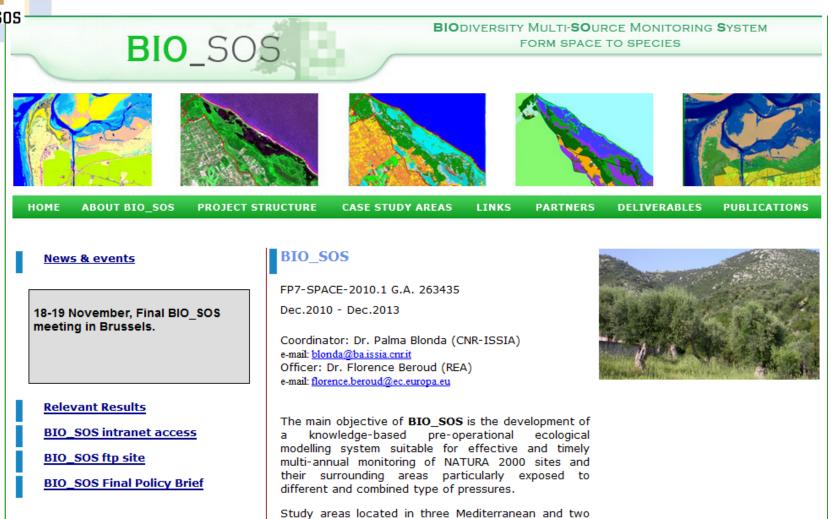
କ୍ୟା

P13 PKH Greece bollanos@planetek.gr

P14 ASI Italy laura.candela@asi.it

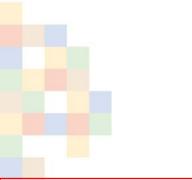
P15_BACRES Italy andrea6311@gmail.com

P16 UPS CESBIO France jordi.inglada@cesbio.cnes.fr


www.biosos.eu

Consiglio Nazionale delle Ricerche

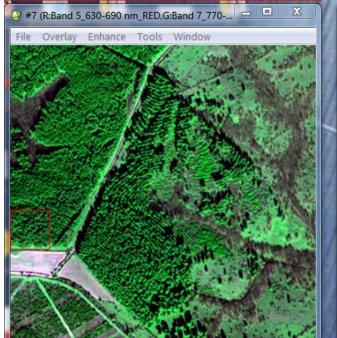
http://www.biosos.eu/



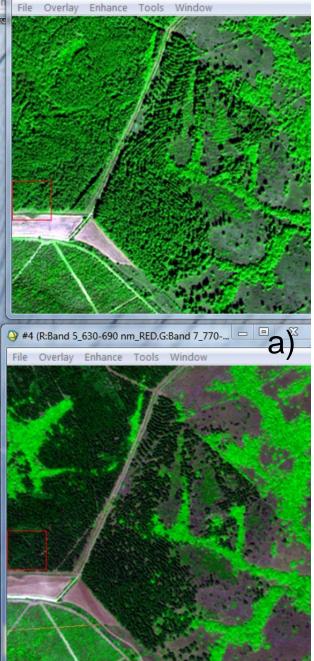
Western Europe Countries have been considered. To

Remote sensing for habitat monitoring

- Multi-temporal: monthly (HR), on demand (VHR), daily through constellations for monitoring:
 - Plant phenology
 - Ecological processes' evolution
 - Changes in LCLU and habitats from archive EO time series
- Multi-scale: spatial resolution ranging from coarse to HR (3m 30m) and VHR (<3m).
- □ Multi or hyperspectral optical sensors
- LIDAR data can provide plant height measurements beside accurate DEM
- SAR sensors can provide complementary information in Band P, C, X (BIOMASS, COSMO SkyMed, ERS 1/2,- ENVISAT) and are weather independent (North European sites !)

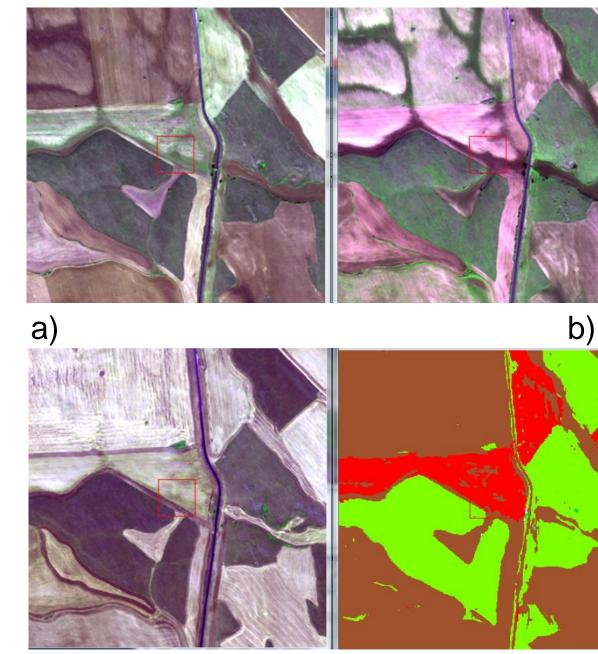


Natura 2000, IT9120007 Murgia Alta site (IT):


Coniferous, broadleaved deciduous and evergreen in different seasons

WorldView2 RBG:5,7,2

a)October 2011 b)January 2012 c)July 2012


b)

С

www.biosos.eu

www.biosos.eu

Natura 2000, IT9120007 Murgia Alta site (IT):

fragmented natural grassland area

WorldView2,

RBG:572

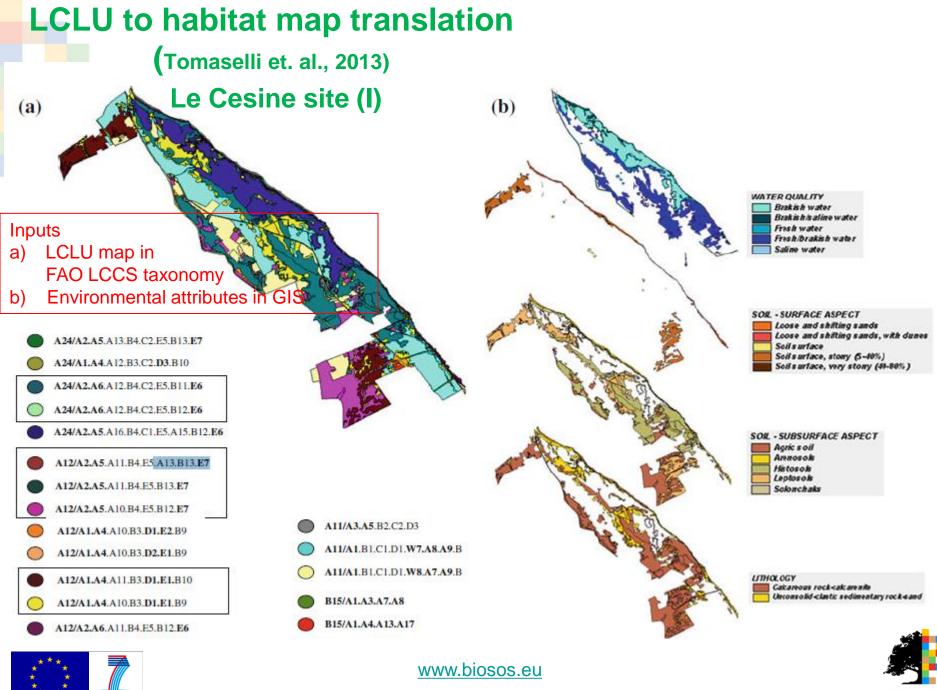
- a) October 2011
- b) January 2012
- c) July 2012

d)

d) Classified image in FAO-LCCS taxonomy

natural grasslands (A12/A2.A6E6)

cultivated herbaceous graminoids (A11/A3.A4)


cultivated herbaceous annual mixed (A11/A3)

Issues for habitat monitoring from space

- □ Selection of a taxonomy for LCLU and habitat classes
 - > LCLU: CORINE, FAO-LCCS, IGBP, etc.
 - > Habitats: Eunis, CORINE Biotope, GHC, Annex I.
- How to train an automatic classification system for LCLU and habitats mapping: data driven or *knowledge-driven?* Pixel based or object based?
- □ Habitats diversity is considered as proxy of biodiversity:
 - How to translate LCLU to Habitats?
 Ecological modeling at habitat level
 - How to define the habitat conservation status?
 Ecological modeling at landscape level

COOPERATION

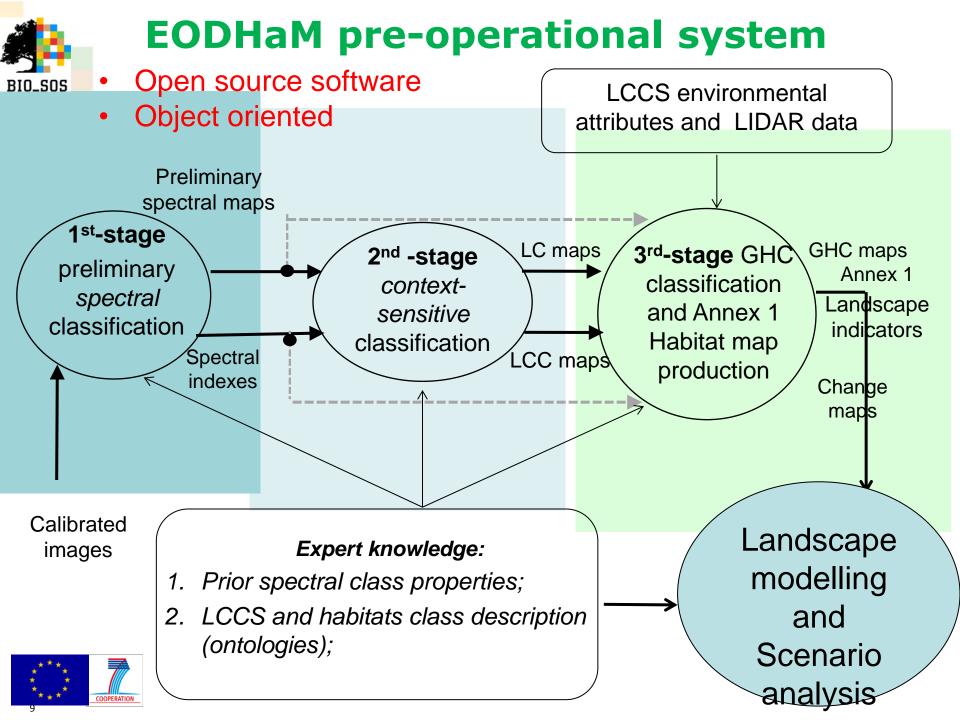
BIO_SOS

BIO_SOS working objectives

The development of pre-operational automatic HR and mainly
 VHR EO data processing and understanding techniques for:
 ✓ LCLU and LCLU change maps production as an improvement of GMES/Copernicus core services.

□ The development of an *ecological modelling framework* at *both habitat and landscape level* to combine EO and *in-situ* data for:

- ✓ Habitat and Habitat change mapping (GHC and Annex I)
- ✓ Biodiversity indicator extraction (e.g. fragmentation).
- ✓ Scenario analysis


as an extension of GMES/Copernicous downstream-services

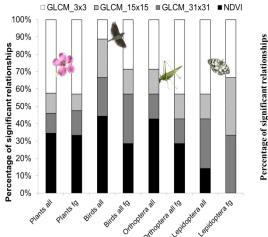
Generalization of the techniques to non-european sites: Brazil and India study areas

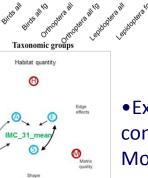
www.bioss.eu

Service Portfolio for Murgia Alta (IT3)

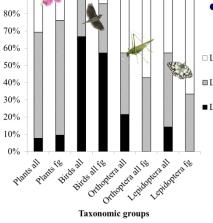
Site / Serv.	IT3 Murgia Alta	Coverage	Temp. res.	Spatial covera ge	Sensor 2m. Res.	Input for	Format Geotiff
S4	NDVI/ GI/ WBI PSRI REP	2009-2010; 2011-2012	Yearly, per each month considered	Local	QB or WV2 WV2 WV2	Landscape Modelling	
S5	Texture from green band		Yearly, Pre-Post Peak images	Local	QB or WV2	Landscape modelling	
S1_1	Permanent natural grasslands A12/A2.A6.E6		Yearly,	Local	QB and WV2	Landscape Modelling	Binary
S1_2	Broadleaved deciduous A12/A3.D1.E2		Yearly,	Local	QB and WV2	Landscape modelling	Binary
S1_3	Broadleaved evergreen A12/A3.D1.E1		Yearly,	Local	QB and WV2	Landscape Modelling	Binary
S1_5	Extraction sites B15/A2.A6		Yearly,	Local	QB and WV2	Landscape modelling	Binary

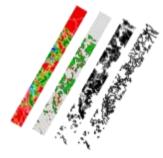
http://www.biosos.eu/

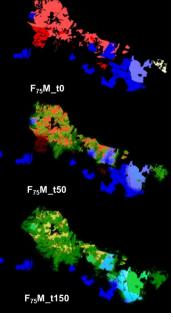

Contributions P1 CNR_ISSIA P10 UNIMIB


Clearly significant results for the whole period

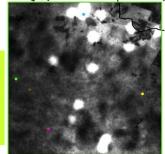
• Developed and successfully tested a framework for identification of site and scale specific indicators of habitat fragmentation from LCCS maps, to quantify historical habitat fragmentation trends and for scenario analysis of future management and climate impacts.


WP6


Task_6.2



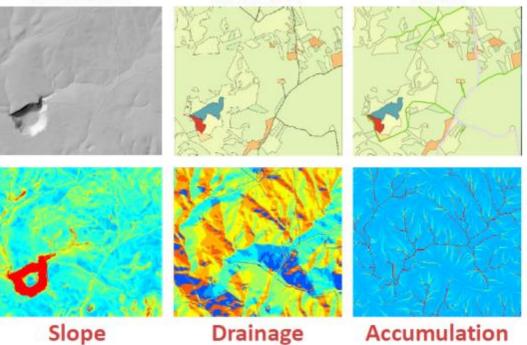
CORFRATION



- Demonstrated the usefulness of VHR EO data as proxies for
 ILE2 indicators of species
 ILE1 functional groups and
- explored their inferential potential towards landscape and habitat structural characteristics, as required for monitoring.

•Explored a framework for landscape functional connectivity modeling using Environmental Niche Models (building on work from task 6.4) and based on both Graph Theory and existing field data for a species of conservation concern.

P1 CNR_IRPI


Contributions P1 CNR_IAC P1 CNR_ISSIA P5 ATREE

Road

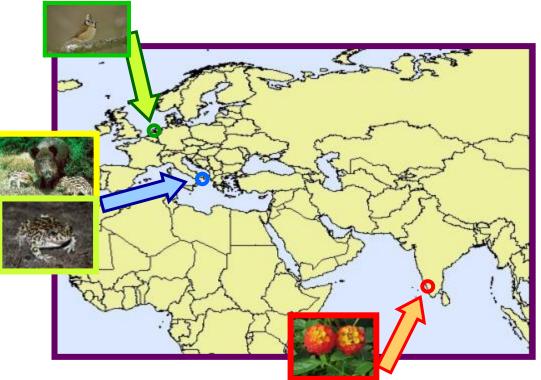
Effect of roads on flow accumulation path

Elevation

Land use

LANDPLANER model: To analyze quantitatively the connectivity of a landscape in terms of water runoff, water infiltration and erosion, two tools were developed: r.sim.road and LANDPLANER.

The tools allow to evaluate runoff and erosion triggering condition for different scenarios.


Contributions P1 CNR_IBBR P1 CNR_ISSIA P4 ALTERRA P5 ATREE P8 UNIBA

Clearly significant results for the whole period

Demonstrated the importance of Ecological Niche Models for linking habitat maps derived from EO data with field data on species distributions with case studies in Italy, the Netherlands and India.

WP6

Task_6.4

Metapopulation dynamics for predator-prey population living in fragmented habitat

Fasma Diele, Carmela Marangi, Stefania Ragni IAC-CNR

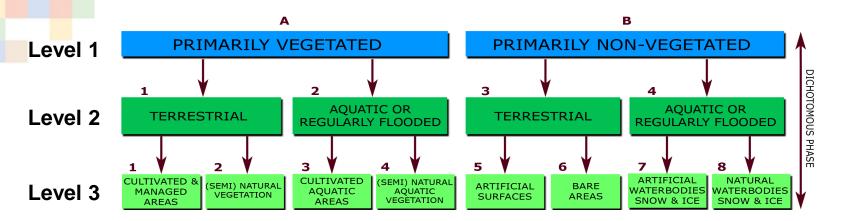
www.biosos.eu

Taxonomies

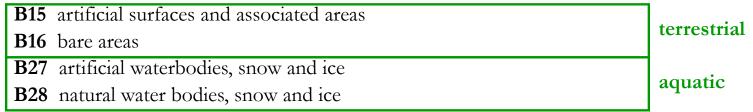
www.biosos.eu

Taxonomies for LCLU and habitats classes

Land Cover/Use (LCLU): FAO-LCCS


- It provides a framework able to describe better than CORINE natural snd semi-natural habitats (Tomaselli et. al., 2013)
- It provides a framework, based on environmental attributes, to integrate LCLU with in-situ data and translate LCLU to habitats
- > It can describe *within* class changes (e.g. in density)
- Habitat classes: General Habitat Category (GHC); Bunce 2008):
 - It is based on plant life forms with an emphasis on landscape-scale data collection appropriate for biodiversity monitoring from Space
 - GHCs are linked to Annex I through a rule based system useful to guide observers into an appropriate in-field class identification
 - CHC system promotes consistent habitats identification between EU Countries and harmonize habitats taxonomies outside Europe.

1) FAO_LCCS: Dichotomous phase


A dichotomous key is used to define eight major LC types

A primarily vegetated

	and managed terrestrial areas	terrestrial
A12 natural a	nd semi-natural terrestrial vegetation	terrestriki
A23 cultivated	l aquatic or regularly flooded areas	aquatia
A24 natural a	nd semi-natural aquatic or regularly flooded vegetation	aquatic

B primarily non vegetated

2) FAO_LCCS: Modular-Hierarchical phase

For any major LC category, a set of diagnostic criteria, based on vegetation structure and physiognomy is applied

pure land cover classifiers	LIFE FORM and COVER	HEIGHT		MACRO PATTERN	
	LEAF TYPE	£	LEAF PHENOLOGY		
Framework to integrate EO and in-situ data	STRATIFICATION				
	LAND FOR	M	LITHOLOGY/SOILS		
environmental attributes	CLIMATE AL		TITUDE EROSION		
specific technical attributes	FLORISTIC ASPECT				

i.e., set of classifiers for the major land cover type A12 (natural and semi-natural terrestrial vegetation)

An	4.2.1 -	CLC3 Salt marshes	Annex I 1410	Annex	
A	A24 1.A4.A12.B3.0 ANNEX I	C2.D3./B10	A2 A2.A6.A12.B4.C Perennial closed on temporarily Soil -	2.E5/B11.E6 tall grasslands flooded land	Floristic
		Lithology-Parent material	suburface aspect	Water quality	attribute
	1410	Unconsolid- Clastic sedimentary rock - Sand	Solonchaks	Brakish/Saline water	Juncus spp.; Carex spp
*	7210	Calcareous rock - Calcarenite	Histosols	Fresh/Brakish water	Cladium mariscus

Automatic classification learning scheme: data driven or knowledge driven?

Knowledge driven (deductive learning)

- Image preliminary spectral segmentation (spectral knowledge);
- Describing LCLU and habitat classes:
 - > phenology to select EO images
 - and spatial relations (if any);
- □ Translating LCLU into habitats (integration with in-situ data)
- Ontologies and semantic networks for knowledge elicitation

The methodology can be applied to any scale and image

Temporal information (phenology)

LCLU and Habitat classes: phenology

LCCS	HABITAT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DEC
A11/A3.A4.D3	1020												
B15/A1.A4.A13.A16	1050												
B28/A1.D2	1130												
A24/A2.A5.E5	1150												
A12/A2.A5.E5	1210												
A24/A2.A5.E7	1310												
A24/A2.A6.E5	1410												
A24/A1.A4.D3	1420												
A12/A2.A6.E6	2110												
A24/A2.A5.E5	3280												
A12/A1.A4.D1.E1	5330												
A12/ A1.A4.D1.E2.F1	5340 (F6.2)												
A12/A1.A4.C1	5420												
A12/A2.A6.C2.E5	6420												
A24/A2.A6.C3	72 A0 (A2.53)												
A12/A1.A3.D1.E1.F1	92 A0												
A12/A1.A4.B3	92D0												
A12/A1.A3.D1.E2.F1	9350												

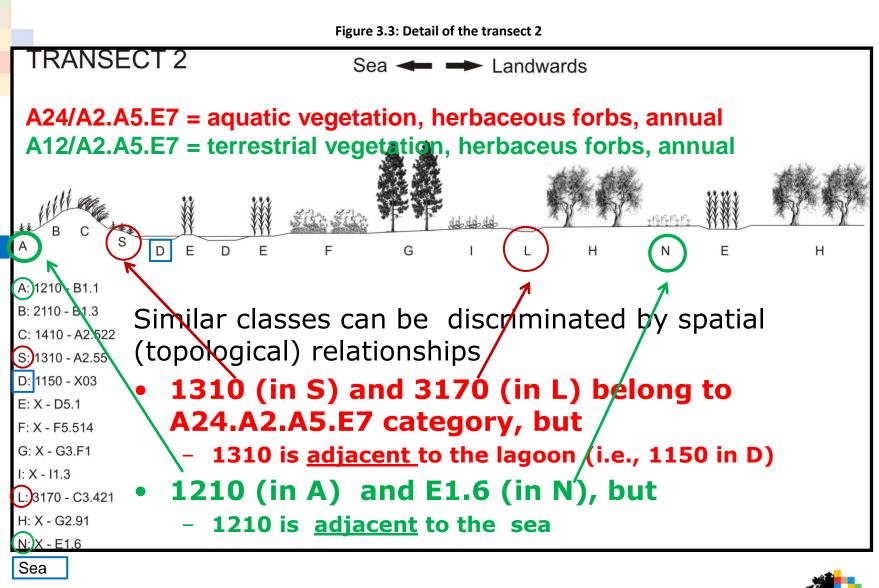
Dense vegetation and/or peak of biomass
Sparse (younger) vegetation or minor green biomass
Minor biomass with with withered/dry plants (or part of plants)
Bare soils (or water in A24) with remnants of withered/dry plants

Ekvoles Kalama site (GR2120001), Greece

LCLU and Habitat classes: water coverage

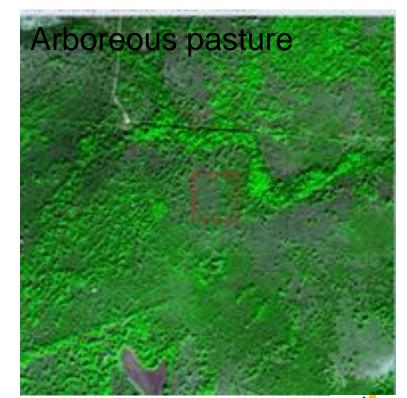
+	LCCS	HABITAT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DEC
	A11/A3.A4.D3	1020												
B1	5/A1.A4.A13.A16	1050												
	B28/A1.D2	1130												
	A24/A2.A5.E5	1150												
/	A12/A2.A5.E5	1210												
/	A24/A2.A5.E7	1310												
	A24/A2.A6.E5	1410												
	A24/A1.A4.D3	1420												
/	A12/A2.A6.E6	2110												
/	A24/A2.A5.E5	3280												
A1	12/A1.A4.D1.E1	5330												
A12	/ A1.A4.D1.E2.F1	5340 (F6.2)												
	A12/A1.A4.C1	5420												
A1	12/A2.A6.C2.E5	6420												
,	A24/A2.A6.C3	72 A0 (A2.53)												
A12	/A1.A3.D1.E1.F1	92 A0												
,	A12/A1.A4.B3	92D0												
A12	/A1.A3.D1.E2.F1	9350												

	Water
	Wet or waterlogged soil
	Dry (at the surface) soil


Ekvoles Kalama site, Greece

www.biosos.eu

Spatial topological relations

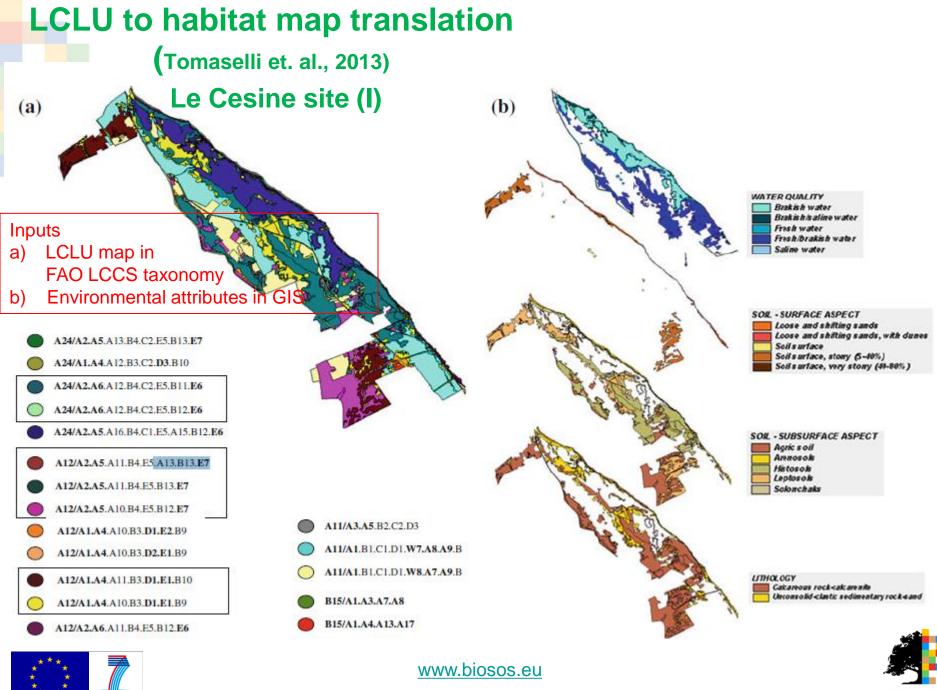

BIO_SOS

Core: olive trees Context: soil and grassland

Class description is scale dependent

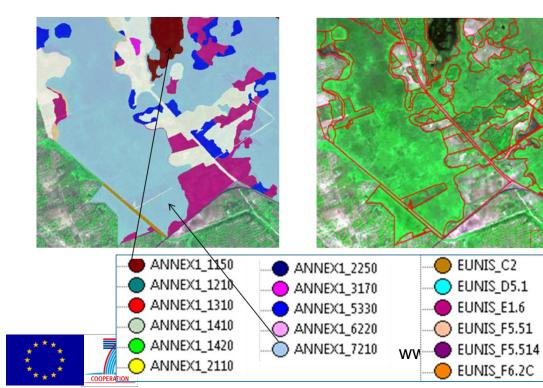
Core: deciduous trees Context: soil and grassland

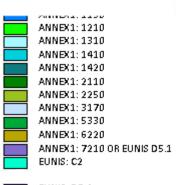
www.biosos.eu



Ecological modeling:

- at habitat level for integrating EO products with environmental in-situ data (if available)
- at landscape level for indicators extraction




COOPERATION

BIO_SOS

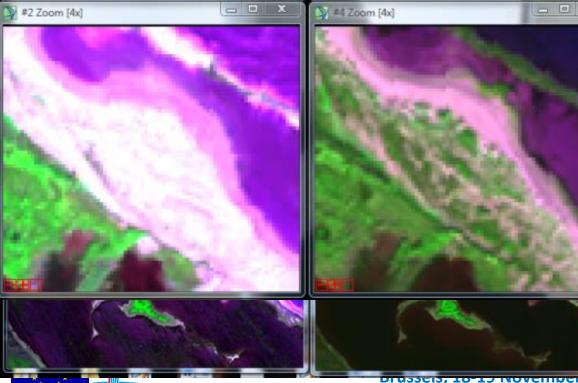
Habitat map: Annex I taxonomy, Le Cesine site (IT)

Habitat map: GHC taxonomy, Le Cesine site (IT)

Look-up


Label CUL(WOC) CUL(CRO) HER(CHE) HER(EHY) HER(HEL) HER(SHY) HER(LHE)_OR_HER(HCH)_OR_HER(GEO) HER(THE)_OR_HER(GEO) SPV(SEA) SPV(AQU) URB(NON) URB(TRE) URB(GRA) URB(ART/ROA) URB(VEG) TRS(DCH) TRS(DCH/DEC) TRS(DCH/EVR) TRS(DCH/EVR/CON) TRS(SCH/DEC) TRS(SCH/EVR) TRS(SCH/EVR/CON) TRS(SCH/NLE) TRS(SCH/SUM) TRS(LPH/DEC) TRS(LPH/EVR) TRS(LPH/EVR/CON) TRS(MPH/DEC) TRS(MPH/EVR) TRS(MPH/EVR/CON) TRS(MPH/NLE) TRS(TPH/DEC) TRS(TPH/EVR) TRS(TPH/EVR/CON) TRS(FPH/EVR/CON) NON CLASS

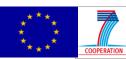
www.biosos.eu


b) LIDAR data (available) were used in this map to extract plant height information

#2 Zoom [4x]

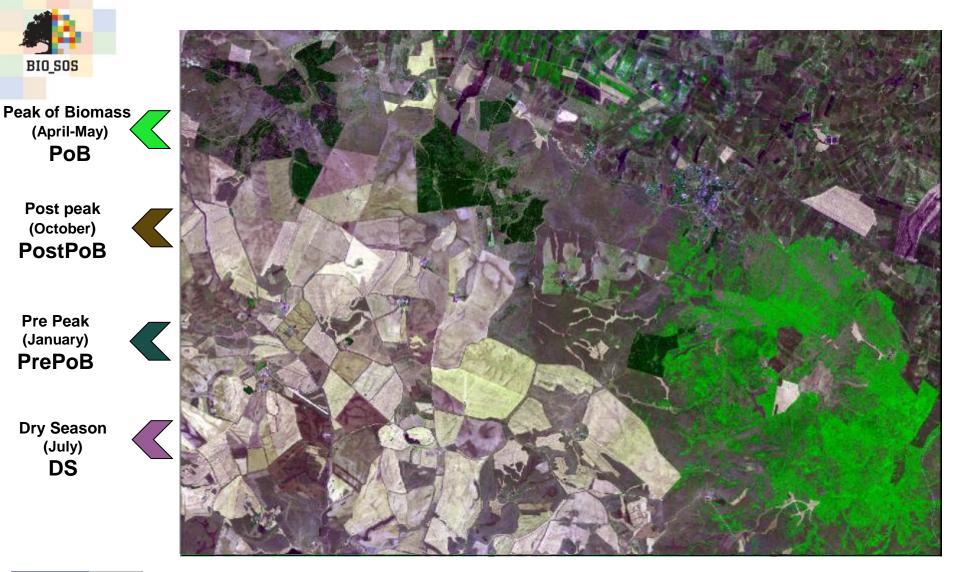
COOPERATION

-


- PEAK image 2009 1.
- POST image 2010 2.

PEAK image 2012 3. POST image 2012 4.

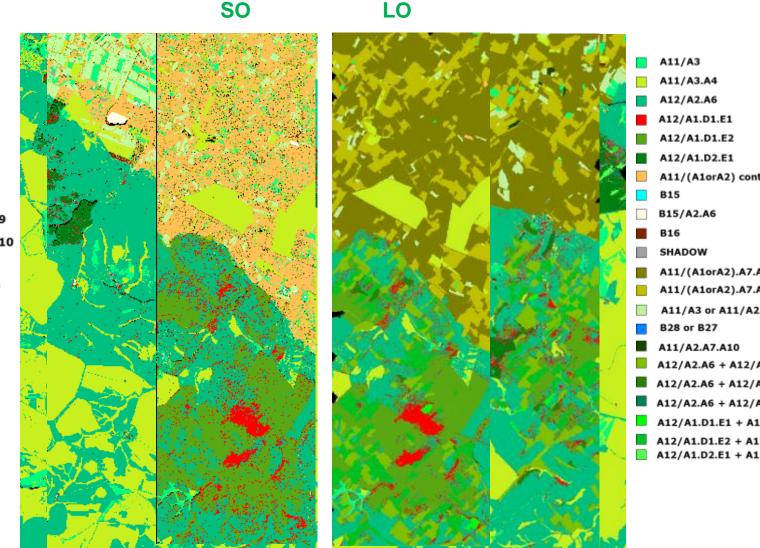
Study sites



BIO_SOS code	Natura 2	000 code	Natura 2000 name		
	SCIs /SACs	SPA			
IT1	IT9110008	IT9110039	Valloni e steppe pedegarganiche		
IT2	IT9110005	IT9110038	Zone umide della Capitanata-Paludi presso il Golfo di Manfredonia		
IT3	IT9120007	IT9120007	Murgia Alta		
IT4	IT9150032	IT9150014	Le Cesine		
GR1	GR2120001	GR2120005	Ekvoles Kalama		
GR2	GR2120002	GR2120006	Elos Kalodiki		
GR3	GR2120004		Stena Kalama		
NL	NL9801023	NL3009017	Veluwe. Dutch case study concentrates on part N2K, namely Ginkelse and Ederheide, a heathland area and Weekeromse Zand an inland sand dune area		
PT1	PTCON0021	PTZPE0037	Rios Sabor e Maçãs		
PT2	PTCON0001	PTZPE0002	Peneda-Gerês		
UK1 UK2	UK0014791 UK0014790		Cors Fochno Cors Caron		

□ Additional areas are being considered in Brazil and India

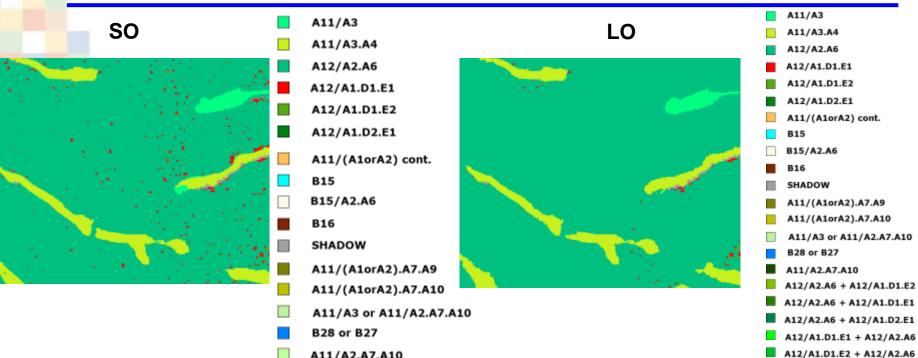
Images Dataset: IT3_Murgia Alta site


http://www.biosos.eu/

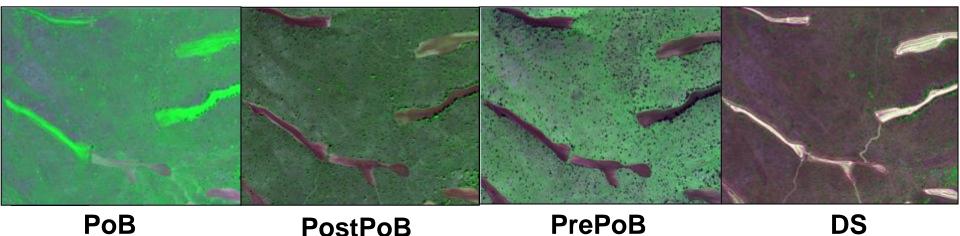
Small Objects (SO) vs Large Objects (LO)

A12/A2.A6

- A12/A1.D1.E1
- A12/A1.D1.E2
- A12/A1.D2.E1
- A11/A3.A4
- A11/A3
- A11/(A1orA2).A7.A9 A11/(A1orA2).A7.A10 A11/A2.A7.A10
- A11/(A1orA2) cont.
- B28 or B27
- B15
- B16
- B15/A2.A6
- SHADOW



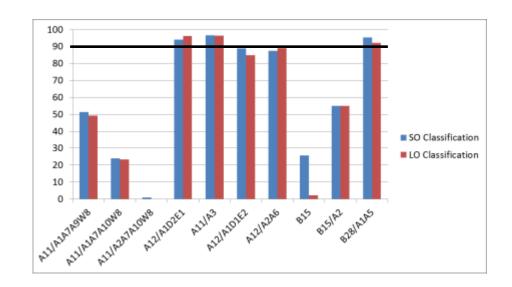
http://www.biosos.eu/


A11/(A1orA2) cont. A11/(A1orA2).A7.A9 A11/(A1orA2).A7.A10 A11/A3 or A11/A2.A7.A10 A12/A2.A6 + A12/A1.D1.E2 A12/A2.A6 + A12/A1.D1.E1 A12/A2.A6 + A12/A1.D2.E1 A12/A1.D1.E1 + A12/A2.A6 A12/A1.D1.E2 + A12/A2.A6 A12/A1.D2.E1 + A12/A2.A6

Examples

PostPoB

A12/A1.D2.E1 + A12/A2.A6



Validation

LCCS MAP	OA%	error%
SO classification	84.0%	0.07%
LO classification	84.4%	0.08%
SO classification (with OTB cultivated_trees strata, no DTM)	78.5%	0.11%
LO classification (with OTB cultivated_trees strata, no DTM)	77.6%	0.13%

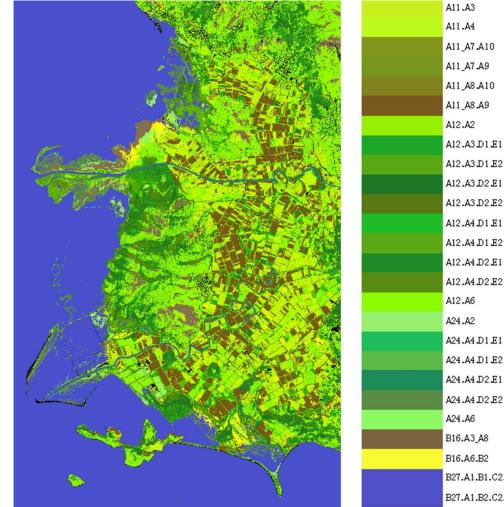
GROUND TRUTH CLASSES

A11/A1A7A9W8
A11/A1A7A10W8
A11/A2A7A10W8
A12/A1A3D2E1
A11/A3
A12/A1A3D1E2
A12/A1D1E1
A12/A2A6
B15
B15/A2
B28/A1A5

http://www.biosos.eu/

Recommendations for biodiversity monitoring (EO)

- Regular acquisition of VHR EO data (pre-flush, peakflush, post-flush) on Natura 2000 sites as hotspots of biodiversity to detect changes (archive data!!!)
 - Clouded areas: SAR-optical and Sentinel data
 - Accurate pre-processing including atmospheric corrections is required
- □ LIDAR or stereo optical acquisitions for vegetation height measurement (CHM) and DTM.


Recommendations for biodiversity monitoring

- To link the *spatial and in-situ* components based on modelling expertise for LCLU to Habitats conversion.
- To produce validated LCLU maps in FAO-LCCS taxonomy or at least ground reference data in FAO-LCCS (not only in CORINE)
- To train terrain managers more in the use and interpretation of EO derived products.

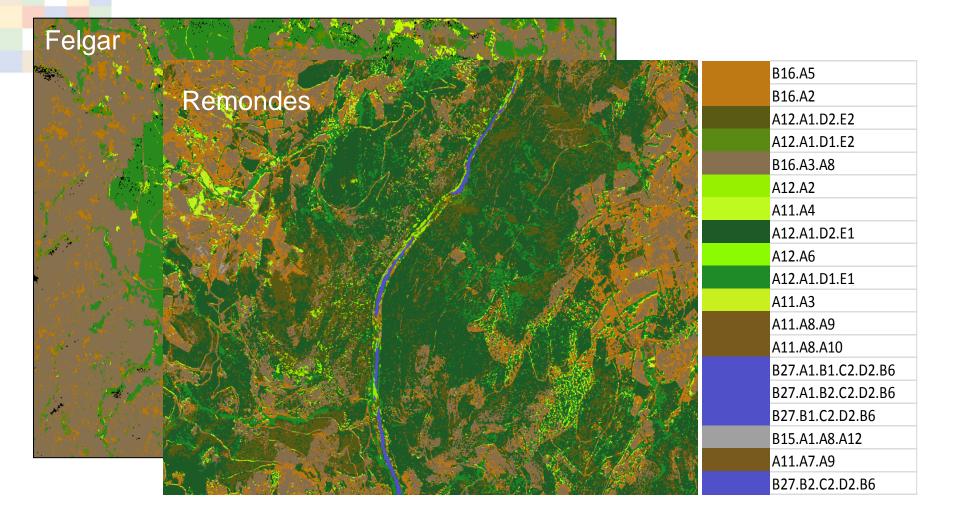
http://www.biosos.eu/

Study site in Greece: LCLU map

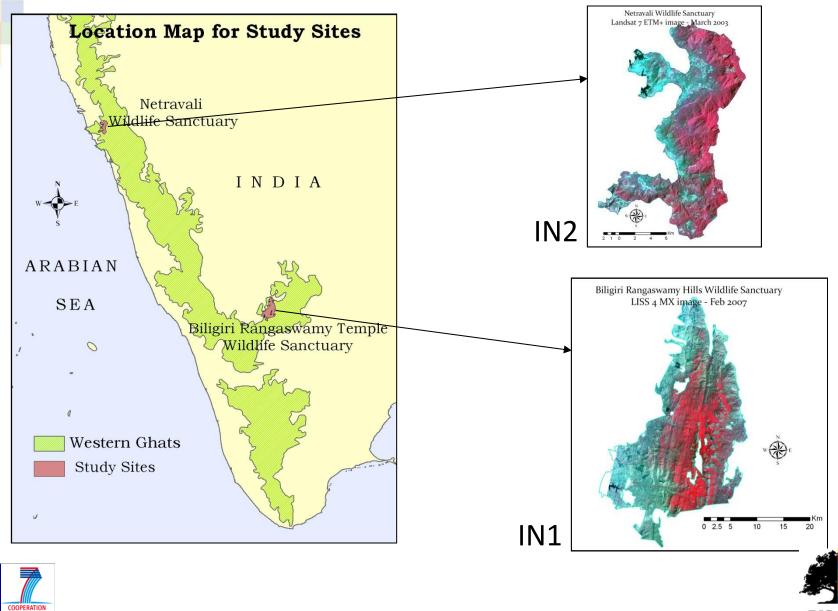
A12.A4 D1 E1 A12.A4 D1 E2 A12.A4 D2 E1 A12.A4 D2 E2 A12.A6 A24.A2 A24.A4 D1 E1 A24.A4 D1 E1 A24.A4 D1 E2 A24.A4 D2 E1 A24.A4 D2 E1 A24.A4 D2 E2 A24.A6 B16.A3_A8 B16.A6.B2 B27.A1.B1.C2.D2_B6 B27.A1.B2.C2.D2_B6

www.biosos.eu

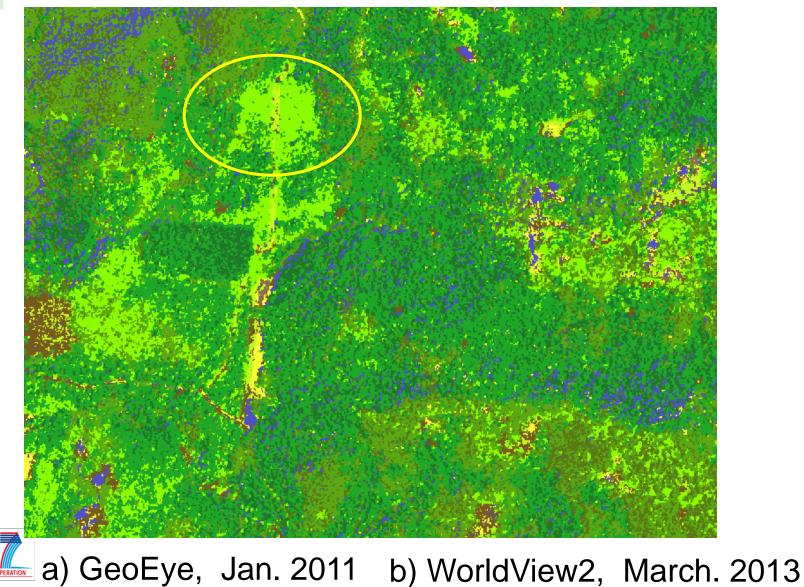
Veluwe, The Netherlands: LCLU map


	B16.A3.A8
	B27.A1
	A12.A3.D2.E2
	A12.A4.D1.E2
	Clouds
	A12.A3.D1.E1
STALL STREET, STALL ST	A12,A4,D2,E2
	A12.A3.D1.E2
	A12.A3.D2.E1
	A12.A1.D2.E2
	A12.A4.D2.E1
	A12.A4.D1.E1
	A11.A1.A7.A9
	A11.A2.A7.A9
CARLES SULVEY TO SHE A CARLES	A12.A4
	A11.A1.A8.A9
	B16.A6
	A12.A6
	B27
	B15.A2
	A11.A1.A7.A10
	A11.A2.A7.A10
	A11.A2.A8.A10
	A11.A2.A8.A9
	A11.A2
	A11.A1.A8.A10
	A11.A4
	B15.A1
	A12.A1.D2.E1
	A11.A8.A10
	A11.A3
	A11.A8.A9

www.biosos.eu



Study site in Portugal: LCLU map


Study Sites in India: location

Study Sites in India: LCLU map Invasive species identification

COOPERATION

BIO_SOS main achievements

EODHaM system products:

- VHR LCLU maps in FAO-LCCS taxonomy
- VHR habitats maps as GHCs and Annex 1 habitats
- Biodiversity indicators
- Change map of LCLU and habitats
- Framework to translate LCLU to habitats classes
- Open source software (python).
- Scalable to other sensors, based on the availability of expert knowledge at different scales (e.g. UAS, WV, Landsat, Sentinel)

□ It can provide scientific support to policy makers

